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1 The Hölder exponent

Given a measure µ over a metric space X, the Hölder exponent or local dimension α(x) of µ at a
point x ∈ X is given by:

α(x) = lim
ε→0

log(µ(Bε(x)))

log(ε)
(1)

where Bε(x) is a ball of radius ε under the metric.
Equivalently, we can say that the Hölder exponent α(x) is the unique real number such that

µ(Bε(x)) ≈ cεα(x) (2)

for some constant c asymptotically as ε→ 0.

2 Singular learning theory setup

We review some of the setup of singular learning theory. Let W ⊂ Rd be a compact subset of
parameter space and X our input space. We have a parameterized statistical model defined by a
probability distribution p(x|w) : X ×W → R. The space of probability distributions has a natural
notion of distance given by the KL divergence:

KL(p(x) || q(x)) =

∫
p(x) log

(
p(x)

q(x)

)
dx.

The behavioral local learning coefficient (behavioral LLC) at a parameter w∗ in the interior of
W is defined as the unique rational number λ(w∗) such that

V (ε) ≈ cελ(w∗)(− log(ε))m(w∗)−1 (3)

asymptotically as ε→ 0 for some integer m(w∗) and constant c, where

V (ε) =

∫
KL(p(x|w∗) || p(x|w))<ε

dw.

When m(w∗) = 1, this becomes
V (ε) ≈ cελ(w∗). (4)

Comparing Eq 2 and Eq 4 one may notice some similarity between λ(w∗) and the Hölder
exponent. This connection may be made rigorous.

We must first solve some technical issues, if we wish to avoid modifying the definition of the
Hölder exponent. The KL divergence is not a metric - it is a divergence, and is not symmetric.
However, it is closely related to the Jensen-Shannon metric dJS , defined as:

dJS(p, q) =

√
1

2
KL(p || m) +

1

2
KL(q || m)

1



where m = 1
2(p+ q) is a mixture distribution of q and m. The Jensen-Shannon metric symmetrizes

the KL divergence by introducing the distribution m “halfway” between p and q, and the square
root makes it a metric instead of a divergence.

Over large distances, the KL divergence and Jensen-Shannon metric may not have a simple
relationship. However, we only need them to be related for small distances. For two sufficiently
close distributions p and q, it holds that

dJS(p, q)2 =
1

8
KL(p || q) +O(dJS(p, q)3). (5)

Now we are ready to introduce our main claim.

Proposition 1. Assume the setup of the prior section, including the definition of the behavioral
LLC λ(w∗) and behavioral local multiplicity m(w∗) for a point w∗ ∈ W . Let α(w∗) be the Hölder
exponent for the point w∗ ∈ W under the uniform measure on W and the Jensen-Shannon metric
dJS . Then:

α(w∗) = 2λ(w∗).

Proof. We leverage Eq 5 to relate the volume close to p(x|w∗) under the KL divergence with the
volume close to p(x|w∗) under the Jensen-Shannon metric:

µ(Bε) =

∫
dJS(p(x|w∗), p(x|w))<ε

dw

=

∫
dJS(p(x|w∗), p(x|w))2<ε2

dw

=

∫
KL(p(x|w∗) || p(x|w))< 8ε2+O(ε3)

dw

= V (8ε2 +O(ε3))

Then by applying Eq 1 and Eq 3, using properties of the logarithm, and removing vanishing
lower-order terms:

α(w∗) = lim
ε→0

logµ(Bε)

log ε

= lim
ε→0

log V (8ε2 +O(ε3))

log ε

= lim
ε→0

log(c(8ε2 +O(ε3))λ(w
∗)(− log(8ε2 +O(ε3)))m(w∗)−1)

log ε

= lim
ε→0

log c

log ε
+
λ(w∗) log(8ε2 +O(ε3))

log ε
+

(m(w∗)− 1) log(− log(8ε2 +O(ε3))))

log ε

= lim
ε→0

λ(w∗) log(8ε2 +O(ε3))

log ε

= lim
ε→0

λ(w∗)

(
log 8

log ε
+

log(ε2)

log ε
+

log(1 +O(ε))

log ε

)

2



= lim
ε→0

λ(w∗)
log(ε2)

log ε

= 2λ(w∗).
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